CEWES MSRC/PET TR/98-37

Practical Aspects of Migrating DoD Codes to
Scalable Architectures

by

S.W. Bova

H. A. Gabb
A. K. Stagg

DoD HPC Modernization Program CEWES MSR G]

Programming Environment and Training

Nlichols

Research

07h00798



Work funded wholly or in part by the DoD High Performance
Computing Modernization Program CEWES
Major Shared Resource Center through

Programming Environment and Training (PET)

Supported by Contract Number: DAHC 94-96-C0002
Nichols Research

Views, opinions, and/or findings contained in this report are those of the author(s) and should not be
construed as an official Department of Defense position, policy, or decision unless so designated by
other official documentation.



July 16, 1998 Practical Aspects of Migrating DoD Codes

Practical Aspects of Migrating DoD Codes to
Scalable Architectures

S.W. Bova™ H.A. Gabb! A K. Stagg?
July 16, 1998

1 Introduction

At CEWES MSRC a tremendous amount of activity is currently underway to
replace the aging vector supercomputers with the next generation, RISC-based
scalable systems. This activity spans many levels and includes hardware acquisi-
tion, advanced training of the user base, and hiring of infrastructure personnel,
application programmers, and numerical analysts. The CRAY-YMP was re-
cently decommissioned, leaving the CRAY C90 as the only vector class machine
at CEWES MSRC. This machine is also scheduled to be decommissioned in
the near future. Simultaneously, millions of dollars have been spent acquiring
scalable, RISC-based machines such as the IBM SP, the CRAY-T3E, and the
SGI/CRAY Origin2000 systems. Future acquisitions of similar hardware are
planned. The primary difficulty in using these new architectures is developing
scalable software! which will run efficiently on multiple processors.

Parallel algorithm design is not easily reduced to simple recipes.
Rather, it requires the sort of integrative thought that is commonly
referred to as “creativity.” However, it can benefit from a method-
ical approach that maximizes the range of options considered, that
provides mechanisms for evaluating alternatives, and that reduces
the cost of backtracking from bad choices [1].

In this report, we discuss the issues associated with retrofitting serial or vector
codes for the emerging class of scalable platforms at CEWES MSRC. Factors
such as user demographics[2], adaptability of the algorithms to scalable plat-
forms, and mission-critical requirements of the DoD should also be considered;
however, we do not explicitly address these issues here.

*Mississippi State University On-site CFD Lead for PET, CEWES MSRC

tComputational Migration Group, CEWES MSRC

{Computational Science and Engineering Group, CEWES MSRC

IScalable software exhibits a resilience to increasing processor counts. A common example
is the ability to increase the problem size at nearly the same rate as processors are added so
that the time to solution remains approximately constant.

1of 11



July 16, 1998 Practical Aspects of Migrating DoD Codes

In general, we believe that there is some confusion within the DoD commu-
nity regarding the processes involved in code migration. This paper is an at-
tempt to clarify some of the pragmatic issues that arise when migrating vector
code from the CRAY C90 to scalable, parallel systems. For example, we argue
that simply providing services to parallelize user codes for distributed memory
systems may be inappropriate. In general, the implementation costs required
for algorithmic analysis and subsequent parallelization are much higher for dis-
tributed memory models than for shared memory models, and these costs must
be carefully evaluated. Also, once a code has been parallelized, a user/developer
is typically unable to make modifications and extend the code’s life unless he
has intimate knowledge of the underlying parallelization strategy. Instead, we
advocate a cooperative relationship where code users/developers play an active
role in the migration process to distributed memory systems.

2 Software Approaches to Parallelism

In this section, we discuss the most common models of parallelism. Our intent is
not to give an exhaustive description of all possible approaches. The interested
reader can see the text by Foster[1]. Instead, we provide a brief overview of the
most popular techniques.

A myriad of software approaches are available to DoD users for paralleliza-
tion of serial code. Factors such as the underlying algorithm and data struc-
ture, portability, performance and efficiency, maintainability, and implementa-
tion cost naturally will impact parallelization strategy. These strategies, which
include MPT (Message-Passing Interface), HPF (High Performance Fortran),
and OpenMP, may be broadly classified as either shared memory or message-
passing.

The essential feature of the message-passing model 1s that at least
two processes are involved in every communication; send and re-
celve operations must be paired. The essential feature of the shared
memory model is that any process can access all the memory in the
machine [3].

Another issue is whether process creation is static or dynamic. Figure 1 illus-
trates a code to be executed in parallel on four processors. Parallel implementa-
tions with tools such as OpenMP, PCF, and CRAY C90 multitasking directives
are shared memory with dynamic process management. In this case, a single
stream of execution (process 0) initially exists. This stream performs program
initialization, ete., until a do-loop associated with a parallelization directive 1s
encountered. Then three more streams are created, usually by spawning ad-
ditional processes. These “worker processes” share the address space of the
master process and are destroyed when the parallel section of code is finished.
If a second parallel section of code is encountered, new worker processes are
spawned. In contrast, the situation is completely different for an MPI or HPF
code. Four distinct execution streams exist from the start, and no address space

20of 11



July 16, 1998 Practical Aspects of Migrating DoD Codes

0
=
(BD ol 1 2| 3
0
C90, OpenMP, PCF MPI, HPF
directives

Y

Figure 1: Static parallelism obtained via MPI and HPF versus multiple execu-
tion streams for loop-level dynamic parallelism obtained via compiler directives

(CRAY C90, PCF, OpenMP).

is shared. The entire problem must therefore be manually distributed among
the processors.

The illustration in Figure 1 is of course a generalization. Other approaches
exist which may combine certain features. For example, PVM is a tool which
allows a message-passing model with dynamic process management. The MPI
2.0 standard which was recently released also specifies dynamic process man-
agement, but vendor sources indicate that the first library releases are several
years away. We emphasize that a distributed memory model can be used on a
shared memory system. For example, this is the case when an MPI code is run
on an SGI PowerChallenge. Also, in principle, a shared memory model can be
used on a distributed memory system, although the software support for this is
a more formidable challenge.

2.1 Shared memory

Implementing code for shared memory systems with compiler directives is rel-
atively simple in principle. A global, shared memory makes it feasible for a
migrator to insert compiler directives or C-preprocessor pragmas within the
code to simply divide the work in loop structures across multiple processors. In

3of11



July 16, 1998 Practical Aspects of Migrating DoD Codes

fact, autotasking compilers used on machines like the CRAY C90 will automat-
ically insert these directives within the code. Of course, one must take care to
ensure that data dependencies within these loops are handled appropriately, or
the parallelization may give erroneous results.

The nice feature of the shared memory model is that the parallelization
process can be accomplished incrementally. A migrator can attack the code
loop-by-loop without requiring any knowledge of the underlying algorithms.
The migrator only needs to be aware of loop structures within the code and a
few classic data dependencies [4]. Loops without compiler directives will simply
be executed by a single processor. An advantage to this strategy when migrating
autotasked CRAY C90 code is that the compiler directives can be mapped to
other vendor compiler directives used on target scalable systems, as with PCF
directives on the Origin2000. In fact, a preprocessor could be written using Perl
or the Unix sed utility to automatically transform Cray compiler directives to
PCF directives, for example. This would accelerate the migration of codes from
the CRAY C90 to the shared memory environment of the Origin2000.

Posix threads (Pthreads) is another useful model for shared memory pro-
gramming. Loop-level parallelism can be expressed using Pthreads, but the
programming model is mainly task-parallel. Program functions are assigned to
threads which are created by Pthreads library calls. Unlike compiler directives,
all threads are peers. A thread may create new threads, terminate itself or other
threads, signal other threads to terminate or begin working, etc. The operating
system allocates resources to the threads, but the programmer must control
synchronization and memory access. Compared to parallel compiler directives,
Pthreads is low-level. However, a Fortran interface to the Pthreads library is
not defined by the Posix standard. A Fortran application programmer interface
to Pthreads is currently under development at CEWES MSRC [5].

The disadvantages of the compiler directive approach on shared memory
systems are related to portability and performance. First, code modified with
shared memory compiler directives will only run in parallel on systems whose
compilers support that type of programming model. OpenMP is an attempt to
alleviate this problem. However, the OpenMP specification does not yet define
an interface to C or C++4. Finally, parallel performance is lower in general with
a shared memory model than with other approaches, partly due to the overhead
assoclated with process creation and termination.

2.2 Distributed memory

In contrast with the shared memory programming model, implementing a code
for the distributed memory environment with either explicit communication
such as MPI or with HPF directives 1s more difficult. In the distributed memory
programming paradigm, a code’s data/memory must be explicitly distributed
over the available processors by the programmer. This involves either tedious
modification of the code for explicit communication when using MPI or careful
insertion of data layout and parallelization directives when using HPF. Code
parallelization cannot be accomplished incrementally in either case, and detailed

4 of 11



July 16, 1998 Practical Aspects of Migrating DoD Codes

knowledge of the code and its algorithms is necessary.

A general perception exists that using HPF to migrate a code is simpler
than MPI and that the decreased implementation cost is worth the lower per-
formance. This is not necessarily the case. For example, in the 1997 DoD
Software Requirements Survey, 1,049 users claimed to require MPI, while only
two listed HPF [6]. Although mitigating factors in the survey suggest that the
discrepancy may not be this large, the numbers indicate that HPF is a viable
option only in certain specialized cases where the generic data distribution pat-
terns of HPF are applicable. For a discussion of the difficulties associated with
certain types of data structures, the interested reader may consult reference [7].

HPF is similar to a shared memory model in that directives are used to
describe data dependencies among processors, but with HPF the data must
be distributed explicitly. For these reasons, parallelizing a code with HPF is
not necessarily easier than developing an explicit message-passing version of the
code, particularly for complex, irregular data structures. In fact, HPF may not
even be a realistic option for codes with irregular data structures.

On the other hand, we feel that the implementation costs associated with
message-passing are often greatly underestimated, even for codes with regular
data structures. The problem is that a thorough analysis of the data flow and
memory access patterns is required before the data structures can be partitioned
and the communication calls added. The analysis must consider the entire
algorithm, not just sections of code as would be possible if a shared memory
model were being used.

One of the primary advantages of explicit communication models such as
MPI is high performance with low communication costs relative to other pro-
gramming models. Also, codes written in this way are generally more portable
across both distributed and shared memory systems. In addition, explicit com-
munication models can be used with Fortran, C, and C4++ code since the com-
munication libraries are developed separately from the compilers. The trade-off
of course 1s in increased 1implementation cost.

3 Migration strategies

The optimal scenario is for original code developers to migrate their own codes
with MSRC consultation. However, DoD users generally have constraints that
limit their involvement in these activities. For example, if a DoD user is a
government contractor, then he 1s generally employed under a specific contract
whose scope does not include software optimization or porting. If the user is
a government employee, he is usually in a production environment and does
not have the luxury of optimizing or porting software. These difficulties are
compounded by the steep learning curve associated with distributed memory
computing.

Parallelizing software for distributed memory systems requires detailed knowl-
edge of the underlying partitioning and communication strategies. Thus, it is
vital that the DoD user be highly interested in learning the essential aspects of

5of 11



July 16, 1998 Practical Aspects of Migrating DoD Codes

parallel algorithm design. For example, consider a code ported by MSRC per-
sonnel in the absence of such a commitment to knowledge transfer. When the
DoD user later decides to upgrade the solver or the constitutive relations, addi-
tional communication calls or reevaluation of the original partitioning strategy
might be required. If he is unaware of these issues, he likely will be unsuc-
cessful in his modifications. He then has the option of learning the required
material, returning the code to the MSRC for maintenance, hiring a consul-
tant to perform the modifications, or reverting back to the original serial code
and discarding the parallel code. These issues are especially acute if the code in
question is a prototype with future modifications planned. In any case, if MSRC
staff become involved in code parallelization without DoD user commitment to
knowledge transfer, a dependency of the code developer upon the MSRC will
be established automatically. The MSRC personnel involved in code migration
must be aware of these issues and implications before attempting a port.

3.1 Selection

In consideration of the programming model issues discussed above, we propose
a strategy for migrating serial code from the CRAY C90 at CEWES MSRC to
scalable, parallel computers. Although other options are available, the main
programming tools that we believe are realistic options are parallel compiler
directives (PCF, OpenMP, and C-preprocessor pragmas), Pthreads, HPF, and
MPI. PVM provides functionality similar to MPI, but vendor support 1s declin-
ing. Other approaches may be desirable on particular platforms. For example,
SHMEM is a low-level Cray library which provides extremely high performance
on the T3D and T3E family of systems by utilizing one-way communication
between processors with a global address space.

We have attempted to identify the key issues involved in selecting a partic-
ular migration strategy. The underlying philosophy is an attempt to balance
implementation cost against other issues such as performance and portability.
(In this work we interpret the word performance in a narrow sense: we mean
parallel scalability and floating point performance. We ignore issues such as
message latency and bandwidth, etc.)

These trade-offs are illustrated qualitatively in Figure 2. Codes parallelized
in shared memory with compiler directives such as PCF will incur the least
implementation cost, be the least portable, and offer the lowest performance.
If the OpenMP standard is embraced by most vendors, then we anticipate that
its main benefit will be increased portability to other shared memory platforms
but with no additional gain in performance. At the other extreme is MPI.
This approach will provide the highest portability and good performance but
at the highest implementation cost. Alternative approaches such as HPF and
SHMEM also are available. With a low-level, vendor-specific library such as
SHMEM, implementation cost is approximately as high as MPI, but portability
is as low as PCF. The advantage of a vendor-specific tool like SHMEM is that in
general the highest possible performance on a single architecture is achievable.
HPF allows for moderate performance and portability which may be obtained

6of 11



July 16, 1998 Practical Aspects of Migrating DoD Codes

Figure 2: A qualitative illustration of the trade-offs among parallel performance,
portability, and implementation cost for some popular parallelization tools.

at moderate implementation cost. In principle, HPF is more portable than
OpenMP because HPF codes may run on both shared and distributed memory
machines. We believe that HPF is less portable than MPI because in practice
compilers implement only a subset of the HPF standard, and differences may
occur from one architecture to another. Also, most commercial HPF compilers
(including the ubiquitous Portland Group product) actually perform source to
source translation and express parallelism using an underlying MPI or Pthreads
library. For maximum performance and portability, we would advocate the use
of MPI in all cases if implementation cost was not an issue.

In the remainder of this subsection, we propose a decision process which
is illustrated in Figure 3. We emphasize that this is a general guideline only;
unanticipated circumstances may suggest that an alternative approach be used.
For example, if a user is working on a mission critical application that warrants
extra attention, higher performance may be sought at any expense.

When migrating a code from the CRAY C90, a migrator should first deter-
mine if the application currently requires modern HPC resources. Computer
hardware advances have resulted in enormous performance improvements in
workstations, and in many cases these workstations will provide adequate re-
sources. If this is the case, the application should be moved from the C90 to a
suitable workstation. If the application actually requires HPC resources and is
based on COTS (commercial, off-the-shelf) software, then placement of the code
will depend on the migration activity of the 3rd-party software vendor. If the
code does not depend on COTS software, then two choices exist. A functionally

7of 11



July 16, 1998 Practical Aspects of Migrating DoD Codes

No

true HPC
application?

vendors

portability

Yes
MPI, SHMEM)-——

(PCF/OpenMP, pthreads

need max
No /scalability,
performance

<_N° irregular

data

Yes

Figure 3: Proposed decision tree for migrating CRAY C90 codes.

8of 11



July 16, 1998 Practical Aspects of Migrating DoD Codes

equivalent CHSSI (Common High Performance Computing Software Support
Initiative) code may be used if one exists, or the application can be ported to
one or more CEWES parallel platforms.

The use of a CHSSI code is preferred for primarily two reasons. First, the
CHSSI software development efforts are supported by the High Performance
Computing Modernization Office (HPCMO) exactly for this purpose. Second,
notwithstanding a user’s preference to develop codes “in-house” (the “Not In-
vented Here Syndrome”), an existing portable, scalable, parallel code is easier
to learn to use than it is to create a new parallel version from a serial vector
code. Forty CHSSI codes span ten computational technology areas. Hence, for
many DoD research projects, a suitable parallel application may already exist.

Without a suitable CHSSI code to provide equivalent functionality, serial
code may be ported. When porting a code to CEWES parallel platforms, we
feel that the user’s level of commitment to involvement in the parallelization ef-
fort should play a key role in determining the model of parallelism used. When
the user has not made a clear commitment to involvement in the parallelization
effort, then we advocate that the code be parallelized using a shared memory
model such as PCF or OpenMP primarily because of the relatively low im-
plementation cost. If the user has committed to involvement, even if only to
understand the parallelization work after it is accomplished, then the need for
portability across CEWES MSRC systems should be assessed. If portability is
unimportant but optimal performance is needed, then MPI or a low-level ven-
dor library (such as SHMEM on the CRAY T3E) should be used. If neither
portability nor performance is essential, then the use of a shared memory model
such as PCF or OpenMP is a viable option. For cases where both portability
and performance are most important, we advocate the use of MPI. On the other
hand, if achieving maximum performance is relatively unimportant but porta-
bility 1s desired, then HPF is an option. However, HPF is only suitable for a
relatively small subset of applications with regular data structures and memory
access patterns. To achieve portability with codes having irregular, complex
data structures, we recommend explicit message passing models such as MPI

and PVM.

4 Conclusions

There is no precise recipe for parallelizing a serial code. Within the context
of the CEWES MSRC, we have attempted to generalize the decision-making
process. Before proceeding to parallelization strategies, it is necessary to verify
that the problem still requires supercomputing capability. Then the two types
of memory models, shared and distributed (Figure 1), are considered. Shared
memory models are conceptually simple and more intuitive since all processes
can access all data. This facilitates incremental parallelization. However, the
cost of process creation/destruction along with the system overhead required
to synchronize the memory access of parallel processes are a barrier to optimal
performance. Distributed memory strategies give optimal performance, but of-

9of 11



July 16, 1998 Practical Aspects of Migrating DoD Codes

ten require low-level data manipulation. As a result incremental parallelization
is difficult, and implementation costs are higher. A cost/benefit comparison of
the major parallel programming models is given in Figure 2. A decision tree
is given to help determine the best parallelization strategy (Figure 3). The de-
cision tree attempts to reconcile the three main considerations: performance,
portability, and cost of implementation. However, failure to consider the user’s
commitment to learn a particular parallel programming model can easily result
in wasted effort on the part of CEWES MSRC personnel.

10 of 11



July 16, 1998 Practical Aspects of Migrating DoD Codes

References

(1]

[2]

Tan Foster. Designing and Building Parallel Programs: Concepts and Tools
for Parallel Software Engineering. Addison-Wesley Publishing Company,
Reading, MA, 1997.

S.W. Bova, Wayne Mastin, and Carey Cox. A taxonomy of major CTA
software at CEWES MSRC. Technical Report PET TR/97-01, CEWES
MSRC, 1997.

William Gropp, Ewing Lusk, and Anthony Skjellum. Using MPI: Portable
Parallel Programming with the Message-Passing Interface. MIT Press, Lon-
don, 1994.

Kevin Dowd. High Performance Computing. O’Reilly and Associates Inc.,
Sebastopol, CA, 1993.

Clay P. Breshears, Henry A. Gabb, and S.W. Bova. Towards a fortran 90
interface to the POSIX threads library. Technical Report PET TR/98-32,
CEWES MSRC, 1998.

Terry Clark. Analysis of DoD high-performance software development using
the 1997 DoD requirements questionnaire. Technical Report DRAFT, ASC
MSRC, 1997.

S.W. Bova, Clay P. Breshears, and Henry A. Gabb. Status report on paral-
lelization of MAGI. Technical Report DRAFT, CEWES MSRC, 1998.

11 of 11



